البحث المتقدم
     

A student advising system using association rule mining

[Abstract] 
النوع مقال
ردمد 15481093
مصدر المعلومات ERIC
المؤلف Shatnawi, Raed. Jordan University of Science and Technology, Jordan.
المؤلف الاضافي Althebyan, Qutaibah. Jordan University of Science and Technology, Jordan.
Ghaleb, Baraq. Edinburgh Napier University, UK.
Al-Maolegi, Mohammed. Community College, Yemen.
الصفحات pp. 65-78
ملاحظة عامة Peer reviewed
المصدر International Journal of Web-Based Learning and Teaching Technologies. Vol. 16, no. 3, Article 5, 2021
الناشر Hershey: IGI Global، 2021
عنوان الناشر 701 East Chocolate Avenue. Hershey, PA 17033. United States. IGI Global. T: 0018663426657 T: 0017175338845. F: 0017175338661 F: 0017175337115. journals@igi-global.com. https://www.igi-global.com/journals/.
ERIC رقم الوثيقة في EJ1290756
المصدر الالكتروني Full text (PDF)  PDF
الواصفات Academic advising  -  Selection procedures  -  Educational technology  -  Information technology  -  Data collection  -  Information retrieval  -  Advisory committees  -  Course content  -  University students  -  Jordan
لغة الوثيقة الانكليزية
البلد الولايات المتحدة
Academic advising is a time-consuming activity that takes a considerable effort in guiding students to improve student performance. Traditional advising systems depend greatly on the effort of the advisor to find the best selection of courses to improve student performance in the next semester. There is a need to know the associations and patterns among course registration. Finding associations among courses can guide and direct students in selecting the appropriate courses that leads to performance improvement. In this paper, the authors propose to use association rule mining to help both students and advisors in selecting and prioritizing courses. Association rules find dependences among courses that help students in selecting courses based on their performance in previous courses. The association rule mining is conducted on thousands of student records to find associations between courses that have been registered by students in many previous semesters. The system has successfully generated a list of association rules that guide a particular student to select courses. The system was validated on the registration of 100 students, and the precision and recall showed acceptable prediction of courses. (As Provided)

PermaLink  الرابط الثابت:

 برامج إدارة المراجع:

Refworks التصدير ل RefWorks

EndNote التصدير ل EndNote


 شارك من خلال وسائل التواصل الاجتماعية:




Cite   للمزيد من الدقة يرجى التأكد من أسلوب صياغة المرجع وإجراء التعديلات اللازمة قبل استخدام أسلوب (APA) :
Shatnawi, Raed. (2021). A student advising system using association rule mining . International Journal of Web-Based Learning and Teaching Technologies. Vol. 16, no. 3, Article 5, 2021. pp. 65-78 تم استرجاعه من search.shamaa.org .