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Abstract: Analysis of variance (ANOVA) is a powerful set of 

statistical procedures that allows a researcher to compare relative 

differences among treatment conditions or types of individuals. In this 

review a limited set of post-ANOVA multiple comparison techniques 

are described and a set of general guidelines are provided that will 

accommodate most situations. 

Keywords: Analysis of variance, multiple comparisons 

 

 Analysis of variance (ANOVA) is a powerful set of statistical procedures 

that allows a researcher to compare relative differences among treatment 

conditions or types of individuals. It is a common misconception, however, for 

people to say that ANOVA tests for differences among group means. Actually, 

the test of significance (the F-ratio) is a ratio of the observed variability of 

group means to the expected random variability of group means based on the 

theory of the sampling distribution of means. A statistically significant F-ratio 

simply says that the observed variability was greater than chance variability, 

hence its name. Once overall statistically significant differences have been 

demonstrated to exist among treatment means using an overall F-ratio, 

however, the investigator is left with the question: "Which means are 

statistically different and which are not?" A significant F-ratio fails to tell 

where differences are found. It is to the process of identification of determining 

how means differ that this paper is directed.  

 Specifically, my purpose here is to describe selected elements of multiple 

comparison techniques and to offer some general guidelines about a subset of 

techniques that will accommodate most situations; it will focus on different 

analytic settings and offer heuristic guidelines about which multiple 

comparison technique to use in each setting. It is not the intent to review a 

broad base of techniques. An interested reader is referred to resources such as 

Hochberg and Tamhane (1987), Hsu (1966) or Toothaker (1993) for that 

purpose.  

 Professor Paul Games (1971) once lamented “The area of multiple 

comparisons is one of the more confusing areas of statistics, and is one that 
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receives a widely differing set of recommendations from many applied 

statistics tests in the behavioral sciences (p.531).” More recently, Sato (1996) 

noted that the wide variety of possible multiple comparison techniques lead to 

confusion and frustration. One might argue that the problem remains although 

not quite as badly as at the time of Games’s ruminations. Twenty-five years 

after Games, Hancock and Klockars (1996) offered an updated view but one 

that is not necessarily consonant with Kirk (1995), Winer (1971, Winer, Brown, 

& Michaels, 1991) or some others. The conceptual model offered herein 

follows the procedures outlined by Games (1971).  

 As in the overall, omnibus analysis, we need to strike an appropriate 

balance between our risk of Type I and Type II error. Given a statistically 

significant F-ratio, the investigator is justified in proceeding with further 

analyses of treatment means. Typically this analysis is guided by a set of 

preplanned (or a priori) comparisons. Sometimes, however, the 

investigator does not have a preplanned set of comparisons. In the latter 

case, exploration of differences among means should proceed with a more 

conservative test. The reason for the increased caution is that since the 

investigator is unaware of where treatment means should differ, any 

exploration may capitalize on chance differences. 

 Consider data from the following study (Ingersoll, Orr, Vance, & 

Golden, 1992). The study was directed at variables that contribute to 

effective self management of Type 1 (Insulin-Dependent) Diabetes among 

adolescents. Better self-management results in better metabolic control. 

Adolescents with Type 1 Diabetes are notoriously in poor metabolic 

control increasing the risks of long-term complications of the disease. Self-

management requires a complex balance of insulin injections, diet, and 

exercise. Too little insulin and exercise in the presence of too much food 

results in elevated blood sugar levels (hyperglycemia). Too much insulin 

in the face of lowered exercise and diet results in lowered blood sugar 

levels (hypoglycemia). Both conditions can be dangerous, even life 

threatening.  

 Data from that study were subjected to a factorial ANOVA focusing on 

two independent variables. First, there is a well-established literature that 

indicates that adolescent girls are routinely in poorer metabolic control 

than adolescent boys. Second, since the self-management involves a 

complex regimen, we included a measure of cognitive social development 

known as conceptual level (CL). The adolescents were divided into three 

groups: Low CL learners who are conceptually rigid and simple, Moderate 

CL learners who are somewhat more flexible but still need well-structured 

environments, and High CL learners who are flexible and adaptable. The 

resulting data are thus conceived as a 2 by 3 factorial analysis. The 
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dependent variable was a measure of metabolic control called glycosylated 

hemoglobin which gives an estimate of average quality of metabolic 

control over a period of about 60 days. A lower value indicates better 

average metabolic control. Table 1 presents the ANOVA summary table 

for the data and Table 2 the cell and marginal means. Analysis of variance 

revealed statistically significant differences for both main effects and no 

interaction. That is, the test for metabolic control by gender yielded 

F(1,118)=9.07, p=.003 and the test by CL yielded F(2,118)=8.39, p<.001. 

 

Table 1  

ANOVA Summary Table SPSS Output Using General Linear Model 

Tests of Between-Subjects Effects 

Dependent Variable:hba1 

Source Type III Sum 

of Squares df Mean Square F Sig. 

Corrected Model 129.013
a
 5 25.803 6.814 .000 

Intercept 12424.595 1 12424.595 3281.206 .000 

Sex 34.356 1 34.356 9.073 .003 

Cog 63.546 2 31.773 8.391 .000 

sex * cog 1.526 2 .763 .202 .818 

Error 446.818 118 3.787   

Total 14128.439 124    

Corrected Total 575.831 123    

a. R Squared = .224 (Adjusted R Squared = .191) 

 

 The question at hand is “Do the mean levels of metabolic control differ 

among the three groups?” Note, since there are only two groups in the 

gender dimension no further tests are needed. Females were in less well 

controlled metabolic status than males. We need only to pursue differences 

among the CL groups. 
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Table 2 

Mean Glycosylated Hemoglobin Levels of Males and Females at Three Levels 

of Conceptual Development 

                                               Conceptual Level 

   Low Mod High All  

nj   34 52 38 124 

___________________________________ 

Sex 

 Male  10.95    9.57   9.30   9.74  

 Female  12.22 10.84 10.07 11.15 

 All  11.77 10.23   9.58 10.45 

________________________________________ 

 Four approaches will be reviewed using both computational and 

computer output approaches: the Fisher LSD, the Tukey HSD, the Dunn, 

and the Scheffé approaches. 

Pairwise Multiple Comparisons 

 One logical alternative to post-ANOVA comparisons of means would 

be to modify our original t-test by using the mean square within as a more 

appropriate estimate of variability of sample means. We could then 

compare all pairs of treatment means YY ji ..
 testing all possible pairwise 

differences against the null hypotheses of no difference. 

 At this point, one might wonder “Why not just do a series of simple t-test?” 

The answer relates to what is called experiment-wise error rate. Experiment 

wise error rates refer to the number of comparisons within an experiment in 

which we expect to find at least one Type I error. If we start with a risk of type 

1 error (α) set at .05, repeated t-tests degrade that error. With 3 or more groups 

multiple comparisons using a simple t is no longer an acceptable procedure 

(Kirk, 1968). What we want is a technique that maintains a constant risk of type 

1 error across comparisons.  
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Fisher LSD 

 The Fisher Least Significant Difference (LSD) approach is based on an 

analog to the simple t-test using the mean square for the error term (

MSerror
) as an unbiased estimate of error variance. In so doing we arrive 

at the formula: 
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We would then compare the resulting t-test to the critical value 

t errordf 
2

1  . If the computed t exceeds the critical 

t errordf 
2

1  we reject the null hypothesis. In this instance, looking at 

Table 1, we find that 787.3MSerror
  and the degree of freedom for the 

error term is 118. The two-tail critical value for a t-test with 118 degrees of 

freedom is 1.98.
i
 Comparing the means of Low CL and High CL 

adolescents can be computed as 
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Since the observed value exceeds the critical value we reject the null 

hypothesis of no difference. In the case of pairwise comparisons, SPSS 

provides the option (under General Linear Model, Univariate, Post Hoc) 

for a test of pairwise differences. Table 3 provides a SPSS summary of the 

tests of pairwise differences using the Fisher LSD. 

 Interpreting the SPSS output is quite direct. The program provides the 

pairwise difference for all combinations and notes whether the difference 

is statistically significant at the .05 level with a “*”. Note that there is 

redundancy in the table. The comparison of group 1 versus group 3 is the 
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same as group 3 versus group 1. Looking at the indicators of statistical 

significance, we find that group 3 differs for both group 1 and group 2 but 

that groups 2 and 3 do not differ.  

The output also provides the standard error for the pairwise comparison 

and you will note that the standard error for comparison 1 versus 3 

matches the computation above. The output also includes the “exact” 

probabilities for each comparison. When the probability is less than .001, it 

simply prints .000.  

 

 

Table 3 

Multiple Pairwise Comparison of Means SPSS Output with LSD 

Multiple Comparisons 

 

hba1 

LSD 

(I) cog (J) cog Mean 

Difference (I-

J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

d

i

m

e

n

s

i

o

n

2 

1.00 
 
2.00 1.5401

*
 .42917 .000 .6902 2.3900 

3.00 2.1883
*
 .45937 .000 1.2786 3.0979 

2.00 
 
1.00 -1.5401

*
 .42917 .000 -2.3900 -.6902 

3.00 .6481 .41529 .121 -.1743 1.4705 

3.00 

 

 

1.00 -2.1883
*
 .45937 .000 -3.0979 -1.2786 

2.00 -.6481 .41529 .121 -1.4705 .1743 

Based on observed means. 

 The error term is Mean Square (Error) = 3.787. 

*. The mean difference is significant at the .05 level. 

  

 Perhaps the more useful element that should not be ignored is the 95% 

confidence interval. The 95% confidence interval is computed by the 

observed difference plus or minus the critical value times the standard 

error.  
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 1 1 2 
  

 CI Y Y t Si j error/
*   

 That is, our observed difference of 2.19 is an estimate. It contains error. 

We are however, willing to conclude that 95 percent of the time, the real 

difference between groups 1 and 3 falls somewhere between 1.28 and 3.10. 

Further, the confidence interval does not overlap with the null hypothesis 

of no difference. 

 The principal problem with the Fisher LSD approach is that it retains 

too high an experiment-wise risk of Type 1 error, especially in the context 

of pairwise comparisons. Most writers discourage its use. Thus, while 

conveniently available, the Fisher LSD probably should be avoided.  

Tukey's HSD 

 The Tukey Honestly Significant Difference (HSD) procedure is similar 

to the LSD procedure but uses a modified error term and compensates for 

the increased experiment wise error rate that results from comparing all 

pairwise means through a modification of the critical comparison value. 

The Tukey HSD is a post hoc procedure. That is, there are no preplanned 

or a priori hypotheses of expected differences. As a post hoc comparison 

technique, all tests are two-tailed. 

 Computing the Q statistic for Tukey’s HSD requires a modest 

alteration of the LSD formula. The standard error of the difference is the 

square root of the mean square error divided by the cell size.  
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 The original Tukey’s HSD thus required equal cell sizes. Multiple 

alternative approaches are available to compensate for unequal cell sizes 

but a simple alternative is to compute a harmonic mean of cell samples. 

That is: 
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where 

 

 

 

Thus, continuing to pursue our difference between groups 1 and 3: 

 

  

 

 

 

 

 The comparison statistic Q is specified as a function of the degrees of 

freedom for the error term (dfe) and the number of means being compared 

(j, the number of groups). In our sample case, we have 3 group means and 

118 degrees of freedom for our error term. The critical value for 118 is not 

available but we can use either the critical value for 3 groups and df=60 or 

3 groups and df=120. The critical values of 1-αQk,dfe are .05Q3,120 = 3.36 and 

.01Q3,120 = 4.20.  

 In reviewing a table of critical values for Tukey’s HSD, note that for 

each row (dfe), the weighted comparison statistic becomes increasingly 

conservative as the number of treatment means increases. That is, given a 

constant number of degrees of freedom for our error term, as the number of 

comparisons increases, the critical value 1-αQk,dfe for the Tukey test also 

increases. This reflects first the increased number of possible comparisons, 

but also the decreased number of observations per comparison. That is, in 

the current case, the number of observations per mean (nj) is about 40. If 

we were to generate comparisons for 6 means with an error term with 120 

degrees of freedom, the number of observations per mean would be 20. As 

we decrease the number of observations per treatment mean, its stability is 

diminished. Likewise, if we increase our number of treatment means from 

3 to 6, we increase the number of possible pairwise comparisons from 3 to 

15. Both factors lead us to be more cautious in our evaluation of pairwise 

differences. We want to increase our protection from a risk of Type I error.  
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Table 4 

Multiple Pairwise Comparison of Means SPSS Output with HSD 

 

Multiple Comparisons 

hba1 

Tukey HSD 

(I) cog (J) cog Mean 

Difference (I-

J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

d

i

m

e

n

s

i

o

n

2 

1.00 
 

2.00 1.5401
*
 .42917 .001 .5214 2.5588 

3.00 2.1883
*
 .45937 .000 1.0979 3.2786 

2.00 
 

1.00 -1.5401
*
 .42917 .001 -2.5588 -.5214 

3.00 .6481 .41529 .267 -.3376 1.6339 

3.00 

 

1.00 -2.1883
*
 .45937 .000 -3.2786 -1.0979 

2.00 -.6481 .41529 .267 -1.6339 .3376 

Based on observed means. 

 The error term is Mean Square (Error) = 3.787. 

*. The mean difference is significant at the .05 level. 

 

 

  As with the LSD, SPSS provides the option for the Tukey test of 

pairwise differences. Table 4 provides a summary of the tests of pairwise 

differences using the Tukey HSD.  Interpreting the SPSS output is 

comparable to our earlier attention to the LSD. The program provides the 

pairwise difference for all combinations and notes whether the difference 

is statistically significant at the .05 level with a “*”. Again, there is 

redundancy in the table. Looking at the indicators of statistical 

significance, we find that group 3 differs for both group 1 and group 2 but 

that groups 2 and 3 do not differ. However, where the exact probability of 

the 2 versus 3 comparison in the case of the LSD comparison was .121, it 

was .267 for the HSD comparison, indicating a more conservative view. 

 Again the more useful element that should not be ignored is the 95% 

confidence interval. The 95% confidence interval is computed by the 
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observed difference plus or minus the critical value times the standard 

error.  

 1
  

CI Y Y Q Si j k dfe error,
*   

 Again, our observed difference of 2.19 is an estimate. It contains error. 

We are however, willing to conclude that 95 percent of the time, the real 

difference between groups 1 and 3 falls somewhere between 1.10 and 3.28. 

The confidence interval is now wider than the LSD procedure.  

 The use of all unplanned pairwise comparisons is a statistically weak,  

inferential procedure. In using this technique we really are unclear about 

the nature of how differences among treatment means should be distributed 

in a meaningful fashion. We are saying "We'll take what we can get." We 

must be cautious in our interpretations of pairwise differences because they 

are evaluated in the context of the theoretical comparison of all possible 

questions. The Tukey procedure is most appropriately applied when an 

investigator wishes to make all pairwise comparisons. By definition, this 

would be a theoretically weak approach. Hence, the HSD is more 

conservative. If we have preplanned comparisons the HSD increases our 

risk of Type 2 error. 

Weighted Linear Contrasts 

 In more complex theoretical models, rather than rely on all pairwise 

comparisons, we prefer to use a finite set of “weighted” comparisons that 

are linked to an existing empirical context. These weighted contrasts may 

be either preplanned (a priori) or unplanned (post hoc.) The test statistic 

for the weighted contrast will be the same in both cases but the comparison 

value will differ for preplanned versus unplanned comparisons. 

 The test statistic is an extension of the logic of the traditional t-test 

(Games, 1971.) It is composed of a weighted linear contrast and a standard 

error of the contrast. These contrasts are linear since they are composed of 

additive, weighted combinations of all the treatment means are denoted by

i
 . Each linear contrast is translatable into a null hypothesis

0
0H i

:  . 

Theoretically, the hypothesized linear contrast assigns weights  iw  to 

population means for each experimental condition  
i

  but in practice we 

estimate the population means by the sample means for each condition 

 
iY .Thus 

kki wwww  ...
332211

is tested by way of 
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YwYwYwYw kk
i

 ...
^

332211  which is an estimate. For any 

valid weighted linear contrast, the sum of the linear weight is 0, i.e., 

0wj
.  

 The standard error of the weighted contrast is 
n
w

MS
j

j

error

2

. That 

is, it is the square root of the product of the mean square error and the sum 

of the squared weights divided by their respective sample sizes. The 

pairwise comparison is a special case of the weighted linear contrast in 

which the weights are +1 and -1 which when squared are both 1. The t-test 

is thus: 





n
w

ms
S

t

j

j

error

ii
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
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 Consider the data at hand. In the original analysis, the following 

hypotheses could be put forward: 

1. High CL adolescents with diabetes are in better metabolic control 

than the remaining adolescents with diabetes. 

2. Moderate CL adolescents with diabetes are in better metabolic 

control than Low CL adolescents with diabetes. 

These two hypotheses can be depicted by the following linear 

contrasts: 

 
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Computing the respective t-tests for the two contrasts we find: 
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 The question now becomes, “Are these contrasts statistically 

significant?” The answer is tied to whether the weighted contrasts are 

preplanned or unplanned and exploratory. Both the Dunn procedure and 

the Scheffé procedure apply the same test statistic. They differ in their 

critical values. 

Dunn 

 When we have contrasts that are preplanned (hypothesized) and are 

restricted to those that have theoretical meaning we gain statistical power. 

That is, we reduce our risk of Type 2 error and the comparison techniques 

that we use to reflect that gain. The Dunn t-test (or sometimes the Dunn-

Sidak or Bonferroni) uses the same test statistic as the Scheffé, however, 

the comparison statistic is based on the premises that 1) comparisons are 

preplanned and 2) the critical value of the test statistic is directly related to 
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the number of planned comparisons and the degrees of freedom of the 

error term.  

 The critical value of the Dunn statistic is found by accessing a table of 

values and is tied to the number of comparisons (in this instance 2) and the 

degrees of freedom for the mean square error (118).  Since your 

hypotheses are preplanned, they should be directional. Accessing the table 

we find that the critical value for Dunn α=.05 is 2.43 and for α=.01 is 2.99. 

Thus, we reject the null hypothesis for hypothesis 1 but retain hypothesis 

2.  

 Although some might argue differently, there are times when the most 

desirable and informative approach to data analysis following ANOVA is a 

preplanned analysis of pairwise comparisons. With a small number of 

groups, this is manageable and appropriate with the Dunn procedure. In the 

present example 3 groups result in 3 pairwise comparisons. But, four 

groups yields 6 and five groups yields 10. Very quickly, any advantage of 

preplanning is lost.  

Confidence Interval 

 As noted before, the 95% confidence interval is computed by the 

observed difference plus or minus the critical value times the standard 

error. Thus 
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Scheffé 

 As several writers (Games, 1971; Huck, 2000; Kirk, 1995; Hancock & 

Klockars, 1996) indicate, the Scheffe' technique is the most general, it is 

also the most constricting. It is preferable for exploratory unplanned post 

hoc weighted linear contrasts. The Scheffé critical value is defined as 

  Fat dfea ),1(
*1    where a is the number of groups and 

( )( )a dfeF 1
is 
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the critical value for an ANOVA test. The critical value for 
2 118,F  is 

3.087. Thus  

 
48.2087.3)(13(

*
),1(1




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t

Fat dfea


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Discussion 

In his classic volume Fisher (1935) advised that if no significant F-ratio was 

found in the omnibus F-test, no further action was justified. If a significant ratio 

was found then the researcher was justified in further exploration. There has 

been some debate about the first proposition (Davis & Gaito, 1984) especially 

in the context of the debate on the arbitrariness of the null hypothesis testing 

model. If a researcher has a priori hypotheses, follow up comparisons may be 

justified, even in the absence of a significant F-ratio. 

 Two cautions are in order. First, as Tukey (1991) warns the presentation of 

an “exact” statistic for a comparison may be misleading. Any treatment mean 

and thus the difference between treatment means is an estimate and contains 

error. A confidence interval based on the multiple comparison statistic is 

preferred. Second, in accord with the current dissatisfaction with rigid 

adherence to the null hypothesis statistical testing model, statistical 

significance may not equate with practical significance. A measure of effect 

size should accompany the test. See Nakagawa and Cuthill (2007) for a useful 

review of this topic. 

The average reader encountering the literature on multiple comparison 

procedures is apt to throw up his or her arms in frustration. In one review, 

Miller (1977) cited 255 papers on alternative multiple comparison procedures 

in an 11 year period, many quite arcane.  I agree with Games (1978) that the 

proliferation of alternative multiple comparison processes is not productive. As 

Games (1971, 1978) notes, the various methods are all reducible to either a 

version of Fisher’s t or Sheffé’s F.  

In thinking about multiple comparison procedures, one is always engaged in 

a trade off of risks of Type 1 and Type 2 error (Cribbie, 2003; Davis & Gaito, 

1984; Games, 1971; Sato, 1996). In the context of a priori planned 

comparisons, we use a more liberal standard that moderately increases risk of 

Type 1 error but radically diminishes Type 2 error. Conversely, when exploring 

unplanned post-hoc comparisons, we use a more judicious and conservative 

approach reducing our risk of Type 1 error at the cost of increasing our risk of 

Type 2 error. Of the techniques, the Scheffe technique is the most conservative 
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and the Fisher most liberal. 

Finally, to review the decision about which multiple comparison technique 

to apply relates to a) whether the comparisons are pairwise or weighted, and b) 

whether the contrasts are preplanned (a priori) or unplanned (post hoc) and 

exploratory. In general the following guidelines are in order: 

1. Pairwise comparisons are most often post-hoc and thus the 

Tukey procedure is most appropriate.  

2. In the instance of pre-planned pairwise comparisons (an 

expected ordered outcome such as in the example case) the 

Dunn process is most appropriate. 

3. Weighted linear contrasts that are preplanned should be tested 

using the Dunn process. 

4. Weighted linear contrasts that are unplanned should be tested 

using the Scheffé process. 

 

 

                                      
i Tables of crit ical values for all the tests noted here are available in most 

intermediate texts of stat ist ics or are readily available on-line.  
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