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Wright's residual-based person fit indices were the first person fit indices with 
dichotomous IRT model and commonly used with Rasch model software. Although 
there were number of studies which suggested modifications to improve the statistical 
properties of the Wright's indices, they remained to lack good statistical properties.The 
study presented a new person fit index and how it can be interpreted and applied for 
detecting person misfit. Moreover, through a simulated data, the study investigated the 
statistical properties and the power rates of the new index and compared it with 
Wright's indices. Results showed that the new index had superior statistical properties 
under different test conditions and overcome the Wright's index. 
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There are many testing circumstances in 
which both developers and users of 
standardized tests might question an 
examinee’s test score. For example, an 
examinee who is unfamiliar with a new 
item format might do badly on these items. 
In addition, students who perform well on 
multiple-choice items and simultaneously 
perform badly on constructed response 
items might raise the question of whether 
these students are using test-taking 
strategies or even cheating on the multiple-
choice items. Students who have reading 
difficulty might do badly on a group of 
items measuring language ability besides 
arithmetic ability on an arithmetic test.  On 
a reading test, an examinee might do badly 
on some reading passages because he/she 
is unfamiliar with the topics of the reading 
passages. In all of these circumstances and 
others, test developers consider such 
responses to be unacceptable and raise 
concerns about the validity of the students’ 
scores (Meijer, Muijtjens, & Van der 
Vleuten, 1996).  

Many methods have been proposed to 
obtain information from an examinee’s 
response pattern across test items (Al-
Mahrazi, 2003; Meijer & Sijtsma, 2001). The 
methods used for understanding response 
patterns, both expected and unexpected, 
are known as person fit indices or 
appropriateness measurement indices. In 
an IRT context, these methods focus on 
investigating whether the item responses 
of an examinee are congruent with the 
expectation of performance ascribed to the 
model used for calibrating test data. The 
response patterns for the majority of 
examinees tend to conform to expectations 
based on overall test performance and item 
interrelationships. However, unexpected 
response patterns do occur and must be 
examined and understood if the 
examinees’ scores are to be maximally 
useful. 

Wright’s (1977) mean square index is one 
of such person fit indices and has been the 
focus of a fair number of research studies 
designed to both understand its utility as 
well as enhance its applicability (George, 
1979; Hambleton, Swaminathan, Cook, 

Eignor, & Gifford, 1978; Reckase, 1981; 
Smith, 1991, 2000; Smith, Schumacker, & 
Bush, 1998). Within the framework of 
Rasch measurement, where the index was 
initially proposed, this mean square index 
was proposed as the central method for 
assessing data fit to the Rasch model. 
Wright (1977) proposed two versions of the 
mean square index: an unweighted and a 
weighted total-fit mean square. Harnisch 
and Tatsuoka (1983) applied these mean 
square indices to a three-parameter logistic 
model and showed how these indices 
could be adopted for any dichotomous IRT 
model.  

The interest in Wright’s (1977) index is 
understandable given the popularity of the 
Rasch model and the usefulness of a 
residual approach in assessing data fit to a 
given model in the measurement field and 
other fields. Almost all available software 
packages for Rasch model calibration 
(WINSTEPS, BIGSTEPS, FACETS, QUEST, 
and RUMM) utilize these mean square 
indices for assessing both model fit and 
person fit. However, many researchers 
raised a number of issues with the use of 
Wright’s indices examining fit. Some later 
researchers (Hambleton et al., 1978; Smith, 
1982; Waller, 1981) found both mean 
square indices are influenced by test 
lengths and sample size. Waller (1981) 
argued that Wright and Panchapakesan’s 
index required a large sample size in order 
to provide precise results. Hambleton et al. 
(1978) argued against using a large sample 
size with the mean square index. They said 
that when the sample size is large, the chi-
square test would always show a rejection 
of the null hypothesis of model fit. Smith 
(1998) stated that the total-fit mean square 
is sensitive to sample size and reliance on a 
single critical value for the mean square 
can result in an under-detection of misfit.  

 Many psychometricians continued to raise 
a number of criticisms associated with the 
use of these mean square indices 
(Andersen, 1973; Hambleton et. al., 1978; 
George, 1979; Gustafsson, 1980; Reckase, 
1981; Van den Wollenberg, 1980, 1982; & 
Wainer, Morgan, & Gustafsson, 1980). For 
example, George (1979), Hambleton et. al. 
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(1978), and Reckase (1981) criticized the 
use of a normal approximation to the 
binomial distribution of examinee's 
response to an item. Smith(1998) showed 
that the empirical distribution was far off 
the expected theoretical distribution, as a 
result, using critical values based on the 
theoretical distribution, the mean square 
index was insensitive to aberrant item 
response patterns. Karabatsos (2000) 
summarized this by noting “this chain-like 
dependence among the fit indices is 
problematic: if a fit index does not meet its 
distributional assumptions for a particular 
test situation, then other indices dependent 
on this index will also not meet their 
distributional assumptions” (p. 162). In 
spite of the numerous modifications and 
versions of Wright’s index, the concerns 
regarding its appropriateness continue. 
Karabatsos (2000) argued “but the fact that 
these indices need correction indicates that 
they are flawed to begin with. Therefore, it 
seems necessary to suggest a few 
alternatives…” (p. 171).  

The focus of this investigation is to develop 
a modification of Wright’s person fit index. 
This modification is a major one with 
relative to previous modifications to 
Wright’s person fit index. The study is 
devoted to deriving and describing a new 
residual-based person fit index that stems 
from the total-fit mean square suggested 
by Wright (1977). The study outlines the 
derivation and interpretation of two 
versions of the new residual-based person 
fit index. The statistical properties of the 
new person fit index are examined and 
compared to Wright’s mean square indices 
with simulated data.  

Wright’s Mean Square Index 
Wright and Panchapakesan’s (1969) mean 
square index standardizes the person’s 
observed item score, yij, which is 
considered as the variable of interest. They 
called it as the standardized residual 
difference for person j’s observed score on 
item i, 

ij
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ij
p

ij
p

ij
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ij
z






 

 ,i = 1, 2, …., n.  (1) 

where pij is the probability of obtaining a 
correct score on item i by a person j with a 
given ability value, j, using any IRT model 
given, and qij =1-pij. The zij score is used as 
an indication of unexpected responses. 
Wright and Panchapakesan (1969) argued 
that these standardized residual difference 
scores are distributed as standard normal 
with a mean of zero and a standard 
deviation of one if the data fit the specified 
IRT model. Wright (1977) used this zij score 
to propose two versions of the mean 
square index: an unweighted and a 
weighted total-fit mean square. The 
unweighted total-fit mean square is,  
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The weighted total-fit mean square is,  
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Wright (1977) believed that both mean 
square indices are useful and needed. 
Wright and Stone (1979) suggested 
transformations to both unweighted and 
weighted mean square indices to remove 
the effect of sample size. The unweighted 
mean square index is transformed by a log 
transformation to as follows,  

 
8

1)( 


n1UMSUMSlnUT .    (4) 

The weighted mean square index is 
transformed by a cube-root transformation, 

    3313 rrWMSWT  ,  (5) 
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 is the standard deviation of the WMS 
index. Wright and Stone (1979) argued that 
both UT and WT scores are distributed as a 
unit normal with a mean of zero and a 
standard deviation of one. Large positive 
values of both UT and WT indicate 
aberrant response patterns. 

The New Modified Residual-
Based Person Fit Indices 
The proposed person fit index is similar to 
Wright’s (1977) mean square index for the 
purpose of person fit analysis in that it 
employs the residual approach to assess 
the fit of a person’s response pattern. 
However, the new index uses a simple 
function of the residual difference between 
the person’s observed response and the 
probability of correctly answering the item 
as a measure of the degree of aberrance in 
a person’s response pattern. The square of 
the residual difference is used as a core for 
this person fit index. Two versions of the 
proposed residual-based person fit index 
are formalized: Unweighted and Weighted.  

In the unweighted version, the squared 
residual difference between the person’s 
observed response and the probability of 
correctly answering each individual item, 
SRij, is computed as,  

  ,
ij

p
ij

y
ij

SR
2

  = 1, 2, …., n. (6) 

The values for SRij could take any value 
that ranges from 0 to 1. The closer the 
value of SRij is to 1, the less is the 
correspondence between the person’s 
response and the IRT model prediction 
and, hence, the more aberrant is the 
person’s response. However, this SRij is 
not sufficient to detect misfitting person 
responses because there is no identified 
value of SRij that can be used to determine 
whether the person’s response is aberrant 

at any ability value. This squared residual 
difference can be standardized at any 
ability value by subtracting from it its 
expected value and then dividing by its 
variance. The expected value of SRij, is: 
  

)()( jθiyVarijqijpijSRE 
,i = 1, 2, …., n. (7) 

and the variance of SRij scores at each 
ability level is,  
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Then, the standardized squared residual 
index, USRij, for a person’s response to an 
individual item is defined as, 
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However, Equation 9 can have undefined 
values in three cases in which the 
denominator has a value of zero: 1) pij = 
0.0, 2) pij = 1.0, 3) pij = 0.5. The first two 
cases do not typically occur with the 
logistic IRT models. The last case might 
exist and, hence, USRij is set to be zero. 
This fixed value will not affect the 
performance of the index, because any 
response (0 or 1) is acceptable by the IRT 
model with this probability value.  

Then, an overall unweighted person fit 
index across all n items, referred to here as 
USR, is computed as,  
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Equation (10) can be further simplified as 
demonstrated in Al-Mahrazi (2003) to, 
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The weighted version of the new person fit 
index is based on computing the sum of 
the squared residual differences across all 
test items, SRj, 
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SRj provides test users with a simple 
measure of the degree of correspondence 
between the observed person’s responses 
to test items and the prediction of the IRT 
model. SRj takes on values that range from 
zero to n. The closer the value of SRj to n, 
the more aberrant is the person’s response 
pattern. Similarly, this SRj is not sufficient 
to detect misfitting person responses 
because there is no identified unique value 
of SRj that can be used to determine 
whether the person’s response is misfitting 
at any ability value. This squared residual 
difference is then standardized at any 
ability value by subtracting from it its 
expected value and dividing by its 
variance. So, the standardized score of the 
SRj is the weighted version of the new 
index, and it is referred to here as WSR: 
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Equation (13) can be further simplified to, 
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If the data fit the IRT model, both USR and 
WSR are likely to follow a unit normal 
distribution with a mean of zero and a 
standard deviation of one. Hence, the 
values of the USR and WSR indices would 
be large and positive to indicate that the 
person is more likely to have an aberrant 
response pattern. This suggests that a one-
tailed significance test (right tail) should be 
used to evaluate both the USR and WSR 
indices for the person. 

Method 
The study examined Wright’s 

index and the new index for three-
parameter logistic IRT model with respect 
to two criteria that are essential for any 
effective person fit index. These two 
criteria are: 1) the empirical null 
distribution of the index matches its 
hypothetical null distribution and this null 
distribution is invariant across different 
test conditions including the ability levels, 
and 2) the index reliably detects aberrant 
responses of various types. The properties 
of the four residual-based person fit indices 
were examined at seven ability values.   

The analyses of the properties of 
these indices were conducted within each 
of twelve data sets that resulted from the 
combinations of the following test 
conditions: two test lengths, (n = 15 & n = 
50), three levels of item difficulty, bi (less 
difficult, medium difficult, more difficult), 
and two levels of item discrimination (low 
ai, high ai). The first level of item difficulty 
represents tests with easy items, and it is 
generated from a uniform distribution in 
the interval U(-3.0, 0.0), the second 
represents tests with medium difficult 
items that are generated from a uniform 
distribution in the interval U(-1.5, 1.5), and 
the last represents tests with difficult items 
that are generated from a uniform 
distribution in the interval U(0.0, 3.0). All 
intervals of the three levels of difficulty 
parameters have the same moderate 
spread. The first level of item 
discrimination represents tests with items 
having low discrimination and generated 
from lognormal distribution (0.6, 0.02), 
while the second level of item 
discrimination represents tests with items 
of high discrimination which is generated 
using lognormal (1.4, 0.06). The guessing 
parameters , ci, for all data sets were 
generated using uniform distribution (0.0, 
0.2).  

The aberrant responses are 
simulated using an information-based 
approach suggested by Reise and Due 
(1991). The information-based approach 
involves simulating aberrant responses 
according to a model in which items are 
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differentially discriminating for different 
individuals. One such model is (Reise & 

Due, 1991) applied to the 3PL IRT model, 

     
]ibθapaexp[

ccθijyProbijp
ji

i
ij )) ((11

1)|1(





7.
,  i = 1, 2, …, n.  (15) 

where all terms are similar to the terms on 
the 3PL IRT model, except for the term ap. 
The ap parameter is the aberrancy level 
parameter. The ap parameter is different 
across individuals and might be different 
or constant across items for a particular 
individual. In this study, the ap parameter 
is treated as constant across items for each 
particular individual.  

Two values of ap is used here to 
simulate aberrant responses. The ap = 1.0 
condition represents the case when 
equation 15 is identical to the 3PL IRT 
model. The data sets generated using this 
level of aberrancy represents data sets that 
fit the 3PL IRT model. At the other 
aberrancy condition, ap = 0.5, the item 
responses using equation 15 differ from the 
responses generated by the 3PL IRT model. 
This condition represents existence of 
aberrant responses.  

Each simulated data set follows a 
similar procedure. First, the n, ai, bi, ci, and 
ap for each data set are specified for the 
3PL IRT model. Then, for each data set, 
using the specified test length and item 
parameters, 1000 response vectors are 
generated at each of the seven points on  
scale using the model in Equation 17. The 
seven true  values range from –3.0 to 3.0 
with an increment of 1.0. This procedure is 
replicated 50 times. At ap = 1.0, the means, 
standard deviations, and type I error for all 
indices were examined. At the other 
aberrancy condition (ap = 0.5), the power 
rates of the indices were examined.  For 
each simulated data set, all person fit 
indices are computed for each simulated 

response vector using the generated item 
responses specified in equation 15, while 
the predictions were based on the 3PL IRT 
model (Equation 15 when ap = 1.0).  

Results 
Table 1 through Table 3 present the 
statistical properties (means, standard 
deviations, type I error rates) of the four 
indices; UTa, WTa, USRa and WSRa, for 
the twelve data sets when data sets fit the 
3PL IRT model (ap=1.0). Table 1 revealed 
that both means and standard deviations 
of the UT index deviated from their 
theoretical values at almost all theta values 
within all data sets. These deviations were 
larger at theta values that were farther 
from the difficulty level of each data set.  
For example, the mean values of the UT 
index were 0.106, 0.152, 0.118, -0.057, -
0.596, -1.762, & -3.464; and the standard 
deviations were 0.941, 0.604, 0.866, 1.704, 
3.067, 4.958, & 7.832, at ability levels of -3, -
2, -1, 0, 1, 2, &3 for data set with n = 15, less 
difficult and low discriminating items.  
Results showed also that increasing items' 
discrimination worsens the deviation of the 
mean and standard deviation values of the 
UT index at ability levels that are farther 
from the difficulty level of items.  For the 
same data set, the mean values became -
0.096, 0.034, -0.162, -1.176, -3.177, -5.851, & 
185.303; and the standard deviation 
became 1.841, 1.337, 2.456, 7.278, 54.921, 
93.320, & 6220.932. Moreover, Lengthening 
test didn't improve the closeness of the 
mean and standard deviation of the UT 
index to zero.  
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Table 1.   
 The means and standard deviations of UT and WT indices under different test conditions.  

b q Low a High a Low a High a Low a High a Low a High a Low a High a Low a High a Low a High a Low a High a
-3 -0.251 -0.483 -0.115 -0.285 2.337 2.883 2.342 3.055 -0.028 -0.050 -0.003 -0.008 1.106 1.125 1.038 1.045
-2 -0.130 -0.442 -0.086 -0.290 1.964 2.890 1.952 2.887 -0.020 -0.051 -0.005 -0.011 1.073 1.112 1.024 1.045
-1 0.005 -0.319 -0.007 -0.190 1.444 2.531 1.465 2.524 -0.001 -0.042 -0.003 -0.003 1.029 1.115 1.006 1.038
0 0.106 -0.077 0.077 -0.081 0.941 1.749 0.967 1.935 0.002 -0.006 0.001 -0.007 1.002 1.018 0.999 1.008
1 0.153 0.036 0.023 0.004 0.585 1.320 0.604 1.431 -0.001 0.005 -0.002 -0.005 1.005 1.001 1.003 1.006
2 0.115 -0.247 -0.189 -0.231 0.841 2.491 0.874 2.815 -0.006 -0.002 0.004 0.007 0.993 0.989 0.994 1.003
3 -0.051 -1.162 -0.055 -1.230 -1.660 7.169 1.798 9.161 0.000 0.005 -0.002 -0.007 1.006 0.981 1.009 1.014

-3 -0.073 -0.394 -0.046 -0.275 1.710 2.781 1.714 2.816 -0.017 -0.043 -0.011 -0.011 1.058 1.121 1.017 1.045
-2 0.063 -0.207 0.037 -0.150 1.118 2.237 1.216 2.354 0.003 -0.022 0.005 -0.004 1.008 1.079 1.005 1.021
-1 0.139 -0.006 0.074 -0.017 0.709 1.483 0.736 1.619 0.002 -0.003 0.005 -0.001 0.991 1.006 0.994 1.003
0 0.147 -0.014 0.077 -0.029 0.625 1.592 0.656 1.711 0.002 0.005 0.000 0.006 0.999 1.002 1.001 0.997
1 0.052 -0.520 0.023 -0.587 1.209 3.682 1.301 4.553 0.000 0.003 0.003 0.004 1.000 0.974 0.999 0.994
2 -0.259 -2.233 -0.189 -2.610 2.316 15.061 2.497 10.747 -0.020 -0.025 -0.002 -0.040 1.052 0.995 1.015 1.123
3 -1.077 -6.106 -0.750 -8.019 4.070 24.666 4.464 83.827 -0.082 0.832 -0.022 0.037 1.129 0.446 1.086 0.849

-3 0.106 -0.096 0.054 -0.063 0.941 1.841 0.978 2.015 0.002 -0.012 0.006 0.000 0.996 1.020 1.000 1.005
-2 0.152 0.034 0.082 0.001 0.604 1.337 0.601 1.403 0.002 0.006 0.004 -0.001 0.995 1.004 0.996 1.000
-1 0.118 -0.162 0.061 -0.219 0.866 2.465 0.879 2.837 0.002 0.006 0.000 0.006 0.992 0.995 1.002 0.996
0 -0.057 -1.176 -0.062 -1.311 1.704 7.278 1.783 8.089 -0.004 -0.003 -0.003 -0.007 1.008 0.983 1.002 1.015
1 -0.596 -3.177 -0.391 -5.682 3.067 54.921 3.319 24.426 -0.050 0.274 -0.007 -0.138 1.108 0.706 1.040 1.145
2 -1.762 -5.851 -1.406 7.708 4.958 93.320 5.957 560.860 -0.091 2.101 -0.066 0.625 1.100 0.223 1.173 0.497
3 -3.464 185.303 -3.778 188.491 7.832 6220.932 10.251 6102.853 0.023 6.787 -0.169 2.915 0.875 0.065 1.251 0.148
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The WT index performed better than the 
UT index. Both mean and standard 
deviation values of the WT index were 
better approximating to their theoretical 
values at all  values with comparison to 
the UT index within all data sets. 
However, the mean values of the WT 
index showed deviated mean and 
standard deviation values at  values 
farther from the average difficulty level 
of test items, and they deviated farther 
within data sets having high 
discriminating items. For example, the 
mean values were -0.091 and -0.023 at 
=2 and 3 for data set with n=50, less 
difficult and low discriminating items, 
whereas they were 2.101 and 6.787 at =2 
and 3 for data set with n=15, less difficult 
and high discriminating items. The 
corresponding values for the standard 
deviation of the WT index were 1.100 
and 0.875 for the low discriminating 
items and 0.223 and 0.065 for the high 
discriminating items. Moreover, 
increasing test length to n=50, reduced 
the deviation of the mean and standard 
deviation values of the WT index at all   
values within all data sets.  

Moreover, Table 1 showed that the 
existence of guessing in test items 
improved the performance of both UT 
and WT indices at low ability values 
with comparison to high ability values 
within all data sets. The means and 
standard deviations were less deviated 
from their expected values at the low 
ability values within all data sets. This 
was especially evident with data sets of 
more difficult items (where low ability 
values are farther from the difficulty 
level of the data set).  

On the other hand, results as shown in 
Table 2 revealed that the USR and WSR 
indices performed well at almost all 
ability values within all data sets. The 
means and the standard deviations of 
both indices were approximately equal 
to their theoretical values. The weighted 
version of the new person fit indices 
(WSR index) showed extremely 
closeness of means and standard 
deviations to their theoretical values at 
all ability values, even with data set with 
extreme characteristics. For example, the 
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WSR index had mean values of -0.006, 
0.007, 0.006, -0.002, -0.002, -0.002, & 0.012 

 and standard deviations of 0.999, 0.999, 
1.004, 0.992, 0.998, 0.997, & 1.031 at the 

ability values of -3, -2, -1, 0, 1, 2, & 3, 
respectively, for the most extreme data 
sets (where n=15, less difficult, high 
discriminating items).

  

Table 2. 
The means and standard deviations of USR, and WSR indices under different test conditions 

b q Low a High a Low a High a Low a High a Low a High a Low a High a Low a High a Low a High a Low a High a
-3 0.007 0.000 0.004 0.001 1.007 0.997 1.006 0.999 0.007 0.001 0.004 0.001 1.006 1.001 1.005 0.001
-2 0.002 -0.001 -0.001 -0.004 1.000 0.998 1.001 0.997 0.001 -0.002 -0.001 -0.002 0.999 0.998 1.001 -0.002
-1 0.006 0.002 -0.004 0.004 1.002 1.007 0.996 1.002 0.007 0.000 -0.002 0.004 1.002 1.005 0.998 0.004
0 0.002 -0.001 0.001 -0.007 1.004 1.001 1.000 1.000 0.003 -0.001 0.001 -0.006 1.006 1.001 0.999 -0.006
1 -0.002 0.006 -0.003 -0.004 1.009 0.995 1.003 1.005 0.000 0.006 -0.002 -0.005 1.007 0.997 1.004 -0.005
2 -0.006 -0.004 0.004 0.007 1.001 0.994 0.995 1.000 -0.007 -0.004 0.004 0.007 1.001 0.996 0.997 0.007
3 -0.003 0.003 0.001 0.000 0.995 1.001 1.006 1.012 0.001 0.003 0.001 -0.003 0.994 0.995 1.003 -0.003

-3 -0.001 0.005 -0.008 -0.003 1.002 1.004 0.997 0.998 -0.001 0.004 -0.009 -0.002 1.001 1.003 0.996 -0.002
-2 0.004 0.004 0.006 -0.001 0.998 1.004 1.000 0.995 0.005 0.004 0.006 0.000 0.998 1.004 1.001 0.000
-1 0.003 -0.003 0.004 0.000 1.000 0.996 0.995 0.999 0.001 -0.002 0.005 -0.001 0.996 0.998 0.995 -0.001
0 0.003 0.006 -0.002 0.005 1.001 1.006 1.002 0.998 0.002 0.006 0.000 0.006 1.002 1.006 1.003 0.006
1 0.000 -0.001 0.002 0.004 1.004 0.993 1.000 0.996 0.001 -0.001 0.003 0.003 1.006 0.995 1.002 0.003
2 -0.003 -0.004 0.000 0.007 1.004 1.010 0.997 0.989 -0.003 0.007 0.000 0.007 1.002 0.992 0.997 0.007
3 -0.004 0.002 0.002 0.013 0.999 0.939 0.993 1.148 -0.004 0.006 0.001 0.002 1.002 1.003 0.994 0.002

-3 0.001 -0.005 0.007 0.002 0.998 1.000 1.002 1.000 0.002 -0.006 0.006 0.001 1.001 0.999 1.001 0.001
-2 -0.001 0.003 0.004 -0.003 0.998 0.998 0.999 0.997 0.002 0.007 0.004 -0.001 0.997 0.999 0.997 -0.001
-1 0.003 0.005 -0.002 0.004 1.002 1.000 1.004 1.000 0.002 0.006 0.000 0.005 1.000 1.004 1.004 0.005
0 -0.002 0.000 -0.004 -0.004 1.001 0.998 0.996 1.002 -0.001 -0.002 -0.003 -0.004 0.999 0.992 0.997 -0.004
1 -0.004 0.009 0.001 0.000 1.002 1.158 0.994 1.004 -0.004 -0.002 0.001 0.002 1.003 0.998 0.994 0.002
2 0.006 0.011 -0.002 0.035 0.995 1.178 1.001 1.614 0.006 -0.002 -0.003 0.000 0.998 0.997 0.997 0.000
3 0.001 0.109 0.005 0.147 1.004 3.884 1.006 4.594 0.001 0.012 0.004 0.002 1.004 1.031 1.004 0.002
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However, for the same data set, the USR 
index had mean values of -0.005, 0.003, 
0.005, 0.000, 0.009, 0.011, & 0.109, and 
standard deviations of 1.000, 0.998m 1.000, 
0.998, 1.158, 1.178, & 3.884 at the ability 
values of -3, -2, -1, 0, 1, 2, & 3, respectively. 
The USR index had acceptable mean 
values at all ability values but deviated 
standard deviations at ability values 
farther from the difficulty level within 
those data sets of less difficult and high 
discriminating items (both n=15 and 
n=50).  

Table 3 present the type I error rates of the 
four indices for the twelve data sets at 
α=0.5. As expected from its extremely 
deviated means and standard deviations, 
the UT index had high type I error rates at  

most ability levels for all data sets; 
especially those with high discriminating 
items. This high type I error rates of the 
UT index did not improve as test length 
increased.  

The WT index showed acceptable type I 
error rates at most ability levels for all 
data sets. However, it was unable to 
control type I error at ability values farther 
from the difficulty level for the high 
discriminating data sets. For example, it 
had type I error rates of 0.575, and 1.000 at 
=2 and 3 for the data set of n=15, less 
difficult and high discriminating items, 
and 0.081, and 0.961 for the data set of 
n=50, less difficult and high 
discriminating items. 
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Table 3. 

 Type I error rates of UT, WT, USR, and WSR indices at =0.05 under different test conditions. 

b q Low a High a Low a High a Low a High a Low a High a Low a High a Low a High a Low a High a Low a High a
-3 0.169 0.170 0.193 0.193 0.043 0.043 0.045 0.045 0.067 0.065 0.060 0.062 0.067 0.065 0.060 0.060
-2 0.157 0.176 0.171 0.194 0.044 0.043 0.045 0.043 0.065 0.066 0.058 0.061 0.065 0.063 0.058 0.059
-1 0.123 0.176 0.125 0.190 0.047 0.046 0.047 0.045 0.063 0.066 0.056 0.061 0.064 0.065 0.056 0.060
0 0.063 0.138 0.057 0.150 0.053 0.047 0.051 0.047 0.059 0.061 0.055 0.056 0.064 0.063 0.057 0.058
1 0.011 0.109 0.008 0.119 0.053 0.049 0.051 0.049 0.056 0.060 0.053 0.056 0.062 0.064 0.057 0.058
2 0.048 0.125 0.044 0.169 0.051 0.050 0.050 0.051 0.054 0.060 0.054 0.059 0.062 0.065 0.057 0.061
3 0.140 0.106 0.155 0.158 0.048 0.049 0.048 0.048 0.060 0.056 0.058 0.059 0.064 0.071 0.058 0.062

-3 0.143 0.167 0.149 0.192 0.044 0.043 0.043 0.043 0.063 0.068 0.056 0.059 0.063 0.069 0.055 0.057
-2 0.093 0.157 0.093 0.174 0.480 0.046 0.048 0.044 0.059 0.066 0.055 0.059 0.062 0.066 0.056 0.058
-1 0.030 0.114 0.023 0.131 0.520 0.049 0.050 0.050 0.055 0.060 0.052 0.056 0.062 0.064 0.056 0.058
0 0.015 0.127 0.013 0.147 0.052 0.052 0.051 0.049 0.058 0.062 0.053 0.056 0.062 0.066 0.056 0.058
1 0.100 0.114 0.109 0.171 0.051 0.051 0.051 0.052 0.060 0.059 0.055 0.061 0.065 0.067 0.059 0.062
2 0.165 0.100 0.194 0.141 0.046 0.053 0.045 0.044 0.065 0.051 0.059 0.057 0.064 0.077 0.058 0.067
3 0.187 0.064 0.224 0.099 0.048 0.131 0.042 0.069 0.068 0.040 0.064 0.045 0.070 0.072 0.061 0.080

-3 0.063 0.133 0.058 0.153 0.051 0.047 0.051 0.049 0.056 0.062 0.055 0.059 0.063 0.063 0.058 0.059
-2 0.013 0.114 0.009 0.112 0.049 0.049 0.051 0.049 0.055 0.061 0.054 0.055 0.059 0.064 0.056 0.058
-1 0.054 0.115 0.046 0.171 0.052 0.052 0.052 0.050 0.055 0.062 0.054 0.061 0.063 0.067 0.059 0.059
0 0.150 0.116 0.154 0.151 0.048 0.048 0.046 0.048 0.062 0.057 0.055 0.059 0.064 0.068 0.056 0.063
1 0.182 0.079 0.217 0.120 0.044 0.082 0.043 0.047 0.069 0.044 0.062 0.049 0.068 0.088 0.060 0.077
2 0.183 0.023 0.231 0.066 0.048 0.575 0.041 0.081 0.070 0.022 0.066 0.036 0.083 0.023 0.064 0.081
3 0.155 0.004 0.212 0.012 0.060 1.000 0.047 0.961 0.066 0.004 0.069 0.011 0.070 0.004 0.061 0.012
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Table 3 showed that both USR and WSR 
indices were able to control type I error 
rates closer to its nominal value at all 
ability values within all data sets. Similar 
to the WT index, both USR and WSR 
indices were unable to control type I error 
at the two most extreme high ability levels 
(=2 & 3) for the less difficult and high 
discriminating data set. However, the type 
I error rates for these two indices were 
deflated as opposite to the case with the 

WT index of which the type I error rates 
were inflated. The type I error rates were 
0.022 & 0.004 for the USR index and 0.023 
& 0.004 for the WSR index at =2 & 3 for 
the data set with n=15, less difficult and 
high discriminating items. The type I error 
rates were 0.036 & 0.011 for the USR index 
and 0.081 & 0.012 for the WSR index for 
the data set with n=50, less difficult and 
high discriminating items. 

Figure 1.  
Power rates of UT, WT, USR, and WSR indices at =0.05 for data sets with more difficult test. 
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Figure 1 through figure 3 present the power 
of the four indices for the twelve data sets 
with the aberrancy level of ap=0.5. The 
power rates of the UT index were higher 
than all other indices at almost all test 
conditions as a result of the inflated type I 
error rates, and hence, it is not considered in 
further discussion. The WT index and the 
new indices (USR and WSR) showed similar 
power rates at most ability levels within all 

data sets. The WSR index had a slightly 
higher power rates than the WT index at 
most ability levels. The USR index had less 
power rates than WSR index at ability levels 
closer to the difficulty level of the data set 
with low discriminating items. For the high 
discriminating data set, the power rates of 
the USR index were closer to the WSR index. 

 
Figure 2. 

 Power rates of UT, WT, USR, and WSR at =0.05 for data sets with medium difficult test  
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Figure 3.  
Power rates of UT, WT, USR, and WSR at =0.05 for data sets with less difficult test. 
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All indices had different power rates 
pattern with different levels of item 
discrimination. For the data sets with low 
discriminating items, the power rates of all 

person fit indices were higher at ability 
levels that were farther from the difficulty 
levels than at ability levels that were closer 
t to the difficulty level of the data set (see 



Journal of Educational and Psychological Studies (JEPS)                SQU 
 

 

24 
 

the left graph on the three figures). 
However, for the data sets with high 
discriminating items, the power rates of 
the four indices were low at low ability 
levels (power was less than 0.15) and they 
were increasing as the ability levels 
increased from -3 to 3 for the more 
difficult and medium difficult data sets. 
However, for the high discriminating and 
less difficult data sets, the power rates of 
the four indices were high at low ability 
levels and it was slightly increased as the 
ability levels approached medium ability. 
At the high ability values, the power rates 
of the WT index jumped higher and 
reached 1.000. However, for the other 
indices, the power rates dropped down 
and became low at high ability values. In 
addition, results shown in the three 
figures revealed that the power rates of 
the four indices were higher within data 
sets with longer test (n=50) than within 
data sets with shorter test (n=15).  

Discussion and Conclusions 
The results of the study revealed that the 
new indices (USR and WSR) performed 
well in terms of means and standard 
deviations at all ability values within all 
data sets. The USR index had acceptable 
mean values at all ability values but 
deviated standard deviations at only those 
ability values which were farther from the 
difficulty level within those extreme data 
sets (less difficult and high discriminating 
items, both n=15 and n=50). In addition 
both USR and WSR indices were able to 
control type I error rates closer to its 
nominal value at all ability values within 
all data sets. Exceptions of that were at the 
two most extreme high ability levels (=2 
& 3) for the less difficult and high 
discriminating data set.  The type I error 
rates for these USR and WSR indices were 
deflated (less than 0.05). on the other 
hand, the WT index had inflated type I 
error rates. Although the USR and WSR 
indices were unable to control type I error 
rates at these conditions, the small type I 
error rates shown by them have less 
consequences on the detection of aberrant 
responses in real testing as compared to 
the high type I error rates with the WT 
index. This is because the positive error 
decision resulted from the USR and WSR 

indices (person fits while he/she is not) 
has less price with comparison with the 
negative error decision resulted from the 
WT index (person misfits while he/she 
fits). 

Moreover, the two new indices showed 
good power rates. The WSR index had 
similar and even slightly higher power 
rates than the WT index at most ability 
levels within all data sets. The USR index 
had less power rates than WSR index at 
ability levels closer to the difficulty level 
of the data set with low discriminating 
items. This indicates that the USR index is 
less sensitive to person misfit at ability 
levels that are closer to the difficulty level 
of the data set. However, for the high 
discriminating data set, the power rates of 
the USR index were closer to the WSR 
index. This could lead to say that having 
high discriminating items on the test 
increases the power rates of the person fit 
indices and make them give similar 
results. 

Although the two versions of the new 
person fit index proposed here and 
Wright’s person fit indices are similar in 
that they both use the residual difference 
between the observed and expected 
person’s item responses, the new person 
fit index differs procedurally from 
Wright’s person fit index in several ways. 
First, the proposed person fit index 
standardizes a squared transformation of 
the residual difference between a person’s 
observed response and the expected 
probability for each individual item. This 
squared transformation can assume any 
value between zero and one. On the other 
hand, Wright’s index standardizes the 
person’s response. The person’s item 
response is dichotomous, i.e., either zero 
or one. Hence, the variable of interest that 
is standardized in the new indices can be 
considered as a continuous variable, 
whereas the variable of interest that is 
standardized in Wright’s index is a 
discrete variable. This structure of the new 
person fit indices suggests that these new 
person fit indices could address the 
criticisms that are raised with Wright’s 
indices regarding the use of the normal 
approximation to the binomial 
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distribution of a person’s responses to 
dichotomous items and the use of the 
Pearson chi-square as a distribution of 
Wright’s mean square indices. In addition 
it is expected that the new person fit 
indices should be less influenced by the 
typical problems associated with sample 
size as supported by the results of this 
study. Both USR and WSR showed 
superior statistical properties when data 
fits the IRT model and similar or even 
better power of detecting aberrant 
responses as demonstrated by this 
simulation study. 

Moreover, both USR and WSR indices are 
straightforward indices which require 
only standardizing the squared residual 
difference which is a stable quantification 
of aberrant responses. On the other hand, 
the UT and WT are chain-like dependence 
indices since they require standardizing 
the person's response to item, squaring it, 
summed it, and transforming it to follow a 
unit normal distribution. This simplicity of 
the new indices is an advantage and 
provides test users with easy 
interpretation and understanding of the 
causes of aberrance in person's responses.  

___________________________________________________________________________________ 
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