Artificial Intelligence & Adaptive Learning:
The Power of Being So Personalized in Education
By
Dr. Eman Ahmed Azmi
A. Prof. of Business Administration, King Saud University
(Formerly)
Doi: 10.33850/ejev.2020.73465

Abstract
This research paper aims to provide the fundamental concepts, recent and personal thoughts and information about the artificial intelligence (AI) in its relationship with adaptive learning (AL) e-environments and applications in education. It contains a bunch of six points presenting the history of artificial intelligent, the relationship with adaptive learning, the main to the point definition of AI, with the key component areas of AI respectively. The research then show the types of artificial intelligence as evolving stages, showing the application of AI in selected sectors in general and in education in particular through the types of AI systems. The research includes eight demonstration figures with five tables and a list of research paper abbreviations for the concepts presented on it.

Introduction
This research paper aims to provide the fundamental concepts, recent and personal thoughts and information about the artificial intelligence (AI) in its relationship with adaptive learning (AL) e-environments and applications in education. It contains a bunch of six points presenting the history of artificial intelligent, the relationship with adaptive learning, the main to the point definition of AI, with the key component areas of AI respectively. The research
then show the types of artificial intelligence as evolving stages, showing the application of AI in selected sectors in general and in education in particular through the types of AI systems. The research includes eight demonstration figures with five tables and a list of research paper abbreviations for the concepts presented on it.

The History of AI

According to the distinguish literature review of Jaakkola, Henno, Mäkelä, and Thalheim’s work: “Artificial Intelligence Yesterday, Today and Tomorrow” (2019), they divided the history of artificial intelligence (AI) into four cycles from their paper viewpoints as demonstrated in figure (1).

AI and AL

For AI systems, the essential element in adaptive learning (AL) systems is the ability to learn from past big data coming from the three basic components of any AL electronic system that aim to provide learning items tailored to the behaviour and needs of individual learners. Those basic components include (Khamies, 2018, p.471; Forsyth, Kimble, Birch, Deel, and Brauer, 2016; and Kara and Sevim, 2013):

- Learner models (whether individual or group learners; also called user profiling model)
- Content models (including meta data specification; also called domain model)
- Adaptation Models (also called narrative and instructional models).

In this regard, there are three broad types of AI learning processes demonstrated in the following table (1) based on Kaplan & Haenlein (2019), Pliakosa, Joob, Parkb, Cornillieb, Vensa, and Noortgateb (2019), and Jaakkola et al (2019) works.

The key to make AL systems so adaptive and personalized is AI systems built into them which monitors student’s inputs and responses and adjusts the difficulty of content accordingly. As shown in figure (2) the relationship between AL system and AI is enhancing
smarter AL applications through the dynamic, just in time, and sound interaction between the elements of data modelling, cloud computing, and big data. This will create a smart personalized adaptive learning (PAL) environment.
The smarter AL applications formed through the capabilities of AI allow customization of standardized training and teaching contents by providing unique pathways through the curriculum and creating small chunks of modularized content that can be assembled and used in a variety of ways based on the experience and learning ability of each person (Pliakosa et al, 2019; and TEM, 2018).

The interesting fact in this regards that the machines’ ability to learn is much more related to adaptive learning through its final stage of development and improvement. Figure (3) shows the idea of machines’ adaptive learning evolve through the history of AI.

<table>
<thead>
<tr>
<th>Types of Learning Process</th>
<th>How it works</th>
<th>Methods</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervised Learning (SL)</td>
<td>SL methods map a given set of inputs to a given set of labelled outputs</td>
<td>Familiar methods like linear regression or classification trees and more complex methods like neural networks</td>
<td>Using a large database of labelled images to separate between images showed different entities</td>
</tr>
<tr>
<td>Unsupervised Learning (UL)</td>
<td>Input are labelled while the output are not. the algorithm needs to infer the underlying structure from the decisions also, he output is derived by the algorithm itself. That why it is not possible to assess the accuracy or correctness of the resulting output. Therefore, users need to place greater trust and confidence into the AI system</td>
<td>Cluster analysis, giving that it groups elements in similar categories but neither structure of those clusters nor their number is known in advance</td>
<td>Speech recognition application in Apple’s Siri and Amazon’s Alexa</td>
</tr>
<tr>
<td>Reinforcement Learning (RL)</td>
<td>System receives an output variable to be maximized and a series of decisions that can be taken to impact the output</td>
<td>AI system aims to learn playing Pac-Man* game by knowing that Pac-Man can move up, down, left and right and that the objective is to maximize the score obtained in the game</td>
<td>Microsoft uses reinforcement learning to select headlines on MSN.com by rewarding the system with a higher score when more visitors click on a given link</td>
</tr>
</tbody>
</table>

* Pac-Man is a maze game that need the player to control Pac-Man, who must eat all the dots inside an enclosed maze while avoiding four colored ghosts. Eating large flashing dots called power pellets causes the ghosts to turn blue, allowing Pac-Man to eat them for bonus points. For more information about this game and real playing, visit: https://www.webpacman.com and http://www.freepacman.org
The Definition of AI

Based on the works of Kaplan & Haenlein (2019), Jaakkola et al. (2019), Future Advocacy (2018), and Panchal (2018), along with the author point of view, artificial intelligence (AI); which so called also machine intelligence, can be defined as the following:

A computer system’s ability to think and behave smartly in different situations by interpreting external data correctly, learning from such data, and using those learnings to achieve specific goals and tasks through flexible adaptation. Such behaviour includes but not limited to solving problems, visual perception, speech recognition, decision-making, and translation between languages. In other words, it is the idea of giving machines the ability of learning.

That is why AI as a field combines variety and integrated disciplines like computer science, engineering, pedagogy, communication, and many other related disciplines to give such ability of learning to machines so called “artificial intelligence”.

The data used to be interpreted and processed to learn are much more related to the concepts of Internet of Things (IoT) and big data (Researcher, 2019¹ and 2019²). The following table (2) describe the interrelationship between AI, IoT, and Big Data.
Figure (3): Machine AL Evolves

<table>
<thead>
<tr>
<th>AI History Cycles</th>
<th>1st Cycle</th>
<th>2nd Cycle</th>
<th>3rd Cycle</th>
<th>4th Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>Programming Cycle</td>
<td>ESs</td>
<td>AI Architectures</td>
<td>Self-Learning Applications</td>
</tr>
<tr>
<td>Technology</td>
<td>AI In Code</td>
<td>Expert Systems</td>
<td>AI Architectures</td>
<td>Deep Learning</td>
</tr>
<tr>
<td>Machine Learning (ML) Generations</td>
<td>1st Generation</td>
<td>2nd Generation</td>
<td>3rd Generation</td>
<td>4th Generation</td>
</tr>
<tr>
<td></td>
<td>Rule-based</td>
<td>Simple ML</td>
<td>Deep Learning</td>
<td>Adaptive Learning</td>
</tr>
</tbody>
</table>

Table (2): AI, IoT, and Big Data

- **IoT**
 - Describes devices around here and there that are equipped with sensors and software to collect and exchange data
 - Those external data came from IoT are one input toward big data and serve as an input for AI
 - So, IoT are one specific way of obtaining the external data required as an input for AI

- **Big Data**
 - Describes data sets characterized by huge **volume**, **velocity**, and **variety** that is, characterized by huge amounts of frequently updated data in various formats, such as numeric, textual, or images/videos
 - Big data is wider than IoT because it includes data collected through other means, such as mobile, social media applications, or an institution’s internal database

- **AI**
 - Uses external information obtained through IoT or other big data sources as an input for identifying underlying rules and patterns by relying on approaches from machine learning, which describes methods that help computers learn without being explicitly programmed*

*Such methods described in the AI learning processes shown in table (2) of this research
The Components of AI

The ability of computing systems to learn needs to be incorporated with advanced data analytics and big data applications. As a software driven system, AI works through intelligent agents with cloud-based AI services in a continually dynamic way that made “optical character recognition” and “computer chess” examples for routine computing. IoT technologies connect the wide variety of AI application systems include robotics, image recognition, natural language processing, real-time analytics tools and many others to deliver more advanced features and capabilities that already change the nature of work and generate a new relationship between human and machine.

To know how it works, it is important to identify the components of AI. All of them are based on the simple idea of algorithm that is, a set or sequence of step by step operations aimed to perform a calculation, process a set of data, or test a logical statement. Figure (4) shows the components of AI that include the following (Researcher, 2019\(^1\) and 2019\(^2\); Greengard, 2019; Teich, 2018; and Future Advocacy, 2018):

- Machine Learning (with sub-field components of predictive analytics & deep learning)
- Machine Perception (with the ability of machine to speak and to recognize images)
- Natural Language Processing (whether for classification, translation, or data extraction)
- Expert Systems
- Planning and Optimization
- Robotics
This component of AI uses statistical methods and algorithms to discover patterns systems to make predictions or decisions without explicit programming. As demonstrated before in table (1) of the types of AI learning processes, ML may consist of supervised (or semi-supervised), unsupervised, and reinforcement learning processes that aim to recognize patterns in data, learn from these patterns, and subsequently make calculations and anticipations based on these data using various techniques to allow the ML algorithm to continuously improve its pattern-finding and predictive abilities. Further demonstration to those types of ML that shown how it works can be presented through their examples in the real business and education life in figure (5).

At this point, there is an interesting and more interactive concept that useful to know related to ML called online machine learning (OML) which is a method of ML in which data becomes available and used to update the model continuously, so the AI algorithm changes as it is used where and when it is necessary to dynamically adapt new patterns in the data, or when the data itself is generated as a function of time.
The approach of deep learning (DL) relies on artificial neural networks (ANNs) to approximate the neural pathways of the human brain. DL systems are particularly valuable for developing computer vision, speech recognition, machine translation, social network filtering, video games and medical diagnosis. In other words, DL systems are vital for machine perception. The corresponding figure (6) shows the
relationship between AI, ML, DL, and NN.

Machine Perception

These AI technologies enable a computing device to inspect, recognize, evaluate and identify speech (machine speech) and still or moving images (machine vision), using automated image capturing, evaluation and processing capabilities. Machine perception have been powered over the last few years by the huge advances in sensors cameras, microphones, accelerometers, global positioning system (GPS), radar and more, which encompasses speech recognition and computer vision used for facial and object recognition.

One of the surprisingly simple AI example of machine perception is the Google “Clips” camera that automatically shoots photos from wherever it's placed. It has machine learning built-in that learns to recognize the people who matter most to the person and decides the best moments to capture and keep.

- **Natural Language Processing (NLP)**
 This technology allows machines to read, understand, and interpret human language using statistical methods and semantic programming to understand grammar, syntax, and even the emotions of the writer or those interacting with systems like Chat Bots, Siri, and Alexa. The following table (3) shows famous examples of NLP applications.

- **Expert Systems (ESs)**
 In AI, expert system is an interactive and reliable computer-based and decision-making system which uses both facts and heuristics to solve complex decision-making problems in a way that emulates the decision-making ability of human expert which solves the most
complex issues in a specific domain based on knowledge obtained from an expert.

ESs are designed to solve complex problems by reasoning through bodies of knowledge, represented by “if – then” rules rather than traditional procedural code. ESs considered as the grandfather of AI, ML, and DL systems.

- **Planning and Optimization**

With the huge increase in computer performance, many AI systems used to discover many things about data and have been combined with other systems to get the desirable benefits in many business and education areas. Planning and optimization are the main benefits of using AI, giving that planning is a long-standing sub-area of AI. It is the task of finding a procedural course of action for a declaratively described system to reach its goals while “optimizing” overall performance measures.
Optimization here is a mathematical way of finding the maximum or minimum value of some function. It takes a set of costs, constraints and goals to determine an award scenario that maximizes the goals subject to the constraints and the costs provided. This may had be done in more efficient, effective, and productive way that generates the main advantages of AI shown in figure (7).

- **Robotics**
 Robotics is the field of design, construction, operation, and application of robot devices that are widely used in factories, hospitals and other settings. These robot systems rely on sophisticated mapping and complex programming, and use machine perception to navigate through tasks.

Types of AI

Theoretically, there are three types of AI that present actually the stages of artificial intelligence. Figure (8) demonstrates the evolution of those AI types, and table (4) shows the area of differences between each of them. They are (Kaplan and
Haenlein, 2019; Jonker, 2019; and Panchal, 2018):

- Artificial Narrow Intelligence (ANI)
- Artificial General Intelligence (AGI)
- Artificial Super Intelligence (ASI)

Applications of AI in Education

Based on the AI systems; analytical, human-inspired, and humanized AI demonstrated in previous table (4), Kaplan and Haenlein (2019) illustrate some AI applications from their visualization within specific sectors include universities, corporations, and governments. The following table (5) shows those applications.

Holmes (2019), and Lu and Harris (2018) argue that in some cases, AI performs functions independently of teachers, while in others it augments teaching capabilities. They show some applications of AI-based education technology to include the following:

- **Tutoring:** AI programs commonly referred to as Intelligent Tutoring Systems (ITS) or adaptive tutors engage students in dialogue, answer questions, and provide feedback.

- **Personalizing Learning:** ITS and adaptive tutors tailor learning material, pace, sequence, and difficulty to each student’s needs. AI can also provide support for special needs students, for example by teaching autistic children to identify facial expressions.
Table (4): Types of AI

<table>
<thead>
<tr>
<th>Types of AI</th>
<th>ANI (Artificial Narrow Intelligence)</th>
<th>AGI (Artificial General Intelligence)</th>
<th>ASI (Artificial Super Intelligence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human level</td>
<td>Weak Below Human level AI</td>
<td>Strong Human level AI</td>
<td>Conscious and Self-Aware Above Human level AI</td>
</tr>
<tr>
<td>AI System</td>
<td>Analytical AI Related to cognitive intelligence</td>
<td>Human-Inspired AI Related to cognitive as well as emotional intelligence</td>
<td>Humanized AI Related to all types of cognitive, emotional, and social intelligences*</td>
</tr>
<tr>
<td>Feature</td>
<td>Can recognize the voice but cannot perform other tasks like driving a car Well-known in performing a single task with smartness</td>
<td>Evolves into a humanoid robot with wide capabilities including voice recognition, coffee preparation, and writing skills Applied to do various tasks with learning and improving itself</td>
<td>Develops super human capabilities such as solving complex mathematical problems at once or writing a best seller books Can think in matters impossible for humans to think with computer superior cognitive ability to a human’s</td>
</tr>
<tr>
<td>Characteristics</td>
<td>Applies AI only to specific areas Unable to autonomously solve problems in other areas Outperforms or equals humans in specific area</td>
<td>Applies AI to several areas Able to autonomously solve problems in other areas Outperforms or equals humans in several areas</td>
<td>Applies AI to any area Able to solve problems in other areas instantaneously Outperforms humans in all areas</td>
</tr>
<tr>
<td>Examples</td>
<td>Speech Recognition: can only recognize speech Voice Assistants: only act upon voice commands which perform a certain action</td>
<td>The application of AlphaGo**: able to play the game of Go, but its intelligence could be applied in various other fields also</td>
<td>Matter of the time when the capability of computers will exceed humans</td>
</tr>
</tbody>
</table>

* Such AI systems that able to be self-conscious and self-aware in their interactions with others are not available yet

** AlphaGo is a computer program that plays the board game Go which is an abstract strategy board game for two players, in which the aim is to surround more territory than the opponent. AlphaGo was developed by DeepMind Technologies and later acquired by Alphabet Inc.’s Google. For more information about AlphaGo, visit: https://deepmind.com and https://www.alphagomovie.com
- **Testing:** Computer adaptive assessments adjust the difficulty of successive questions based on the accuracy of the student’s answers, enabling more precise identification of a student’s mastery level.

- **Automating Tasks:** AI can perform routine tasks such as taking attendance, grading assignments, and generating test questions.

Conclusion:

Artificial intelligence (AI) as a computer system has the ability to think and behave smartly in different situations. The main processes for doing such thinking and behaviour are done by interpreting external data correctly, learning form those data, and using the result learning to achieve specific goals and tasks through flexible adaptation. Whether solving problem, visual and speech recognition, decision making, or translation between languages, the process of giving machines the ability to learn has been evolved through four historical cycles over the time. Starting with programming cycle in 1940s to 1960s, then the expert systems cycle.
in 1970s, and AI architectures cycle in 1980s to 2000s, till the fourth cycle of self learning application in 2010s and beyond.

The relationship between AI and adaptive learning (AL) is quite interrelated and integrated from the author point of view. The way that artificial intelligent machines learn is a kind of adaptive learning process with any of the types of machine learning that supervised, unsupervised, or even reinforced. The data models of big data hand on hand with processing power of those data as a strong capabilities of AI could result in smarter, so personalized AL applications. The key components area of AI in this regard to do so are machine learning (ML), machine perception, natural language processing (NLP), expert systems, planning and optimization, and robotics.

In the near future, the evolution of AI systems from the narrow and general intelligences to the supper one could be a reality so soon with conscious and self aware machines that humanized to the extent of having the crucial kind of cognitive, emotional, and social intelligences. The applications of AI in education may be varied between AI independent functions of teachers and the AI functions that augmenting human teaching capabilities. The main AI-based education technologies include the intelligent tutoring systems (ITS), personalizing adaptive learning (PAL), testing, and automating administrative and educational routine tasks.

List of Abbreviations

- **AGI**: Artificial General Intelligence
- **AI**: Artificial Intelligence
- **AL**: Adaptive Learning
- **ANI**: Artificial Narrow Intelligence
- **ANNs**: Artificial Neural Networks
- **ASI**: Artificial Super Intelligence
- **DL**: Deep Learning
- **ESs**: Expert Systems
GPS: Global Positioning System
IoT: Internet of Things
ITS: Intelligent Tutoring Systems
ML: Machine Learning
NLP: Natural Language Processing
NN: Neural Networks
OML: Online Machine Learning
PAL: Personalizing Adaptive Learning
RL: Reinforcement Learning
SL: Supervised Learning
UL: Unsupervised Learning

References

Achieving Egypt's Vision 2030, Faculty of Specific Education, 17-18 April, Alexandria University, Alexandria, Egypt.

Websites
https://deepmind.com
https://www.alexa.com
https://www.alphagomovie.com
https://www.apple.com/siri
https://www.chatbot.com
https://www.freepacman.org
https://www.webpacman.com